Whiskers, barrels, and cortical efferent pathways in gap crossing by rats.
نویسندگان
چکیده
Rats can readily be trained to jump a gap of around 16 cm in the dark and a considerably larger gap in the light for a food reward. In the light, they use vision to estimate the distance to be jumped. In the dark, they use their vibrissae at the farthest distances. Bilateral whisker shaving or barrel field lesions reduce the gap crossed in the dark by about 2 cm. Information from the barrel fields reaches motor areas via cortico-cortical, basal ganglia, or cerebellar pathways. The cells of origin of the ponto-cerebellar pathway are segregated in layer Vb of the barrel field. Efferent axons of Vb cells occupy a central position within the basis pedunculi and terminate on cells in the pontine nuclei. Pontine cells, in turn, project to the cerebellar cortex as mossy fibers. We trained normal rats to cross a gap in the light and in a dark alley that was illuminated with an infra-red source. When the performance was stable, we made unilateral lesions in the central region of the basis pedunculi, which interrupted connections from the barrel field to the pons while leaving cortico-cortical and basal ganglia pathways intact. Whisking was not affected on either side by the lesion, and the rats with unilateral peduncle lesions crossed gaps of the same distance as they did pre-operatively. Shaving the whiskers on the side of the face that retains its input to the pontine nuclei reduced the maximal gap jumped in the dark by the same amount as bilateral whisker shaving. Performance in the light was not affected. Regrowth of the shaved whiskers was associated with the recovery of the maximum distance crossed in the dark. In control cases, shaving the whiskers on the other side of the face did not reduce the distance jumped in the dark or in the light. These results suggest that the cerebellum must receive whisker information from the barrel fields for whisker-guided jumps.
منابع مشابه
Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast.
BACKGROUND Cortical whisker barrels in the primary somatosensory cortex are a well-known example of brain function in rodents. The well-defined relationship between barrels and whiskers makes this system a unique model to study neuronal function and plasticity. In this study, we sought to establish a feasible working protocol of applying manganese-enhanced MRI (MEMRI) to map the cortical barrel...
متن کاملEnhancement of cortical plasticity by behavioral training in acetylcholine-depleted adult rats.
Trimming all whiskers except two on one side of an adult rat's face results in cortical plasticity in which the spared whiskers, D2 and one D-row surround whisker (either D1 or D3), evoked responses containing more spikes than the response evoked by the cut whisker (called whisker pairing plasticity). Previously we have reported that acetylcholine (ACh) depletion in cortex prevents surround D-r...
متن کاملNeonatal whisker trimming produces greater effects in nondeprived than deprived thalamic barreloids.
1. Microelectrodes and controlled stimulation of mystacial vibrissae were used to examine the response properties of thalamic barreloid neurons in adult rats that had been raised in an abnormal tactile environment produced by having one (row C) or four (all but C) rows of whiskers trimmed to the skin surface from birth to 45-53 days of age. Whiskers were allowed to regrow for an average of appr...
متن کاملSize gradients of barreloids in the rat thalamus.
The spatial organization of the anatomical structures along the trigeminal afferent pathway of the rat conserves the topographical order of the receptor sheath: The brainstem barrelettes, thalamic barreloids, and cortical barrels all reflect the arrangement of whiskers across the mystacial pad. Although both the amount of innervation in the mystacial pad and the size of cortical barrels were sh...
متن کاملTemporal precision in population—but not individual neuron—dynamics reveals rapid experience-dependent plasticity in the rat barrel cortex
Cortical reorganization following sensory deprivation is characterized by alterations in the connectivity between neurons encoding spared and deprived cortical inputs. The extent to which this alteration depends on Spike Timing Dependent Plasticity (STDP), however, is largely unknown. We quantified changes in the functional connectivity between layer V neurons in the vibrissal primary somatosen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2000